
The hardest part was bending the limbs. I soaked the areas that I want to bend with water and then used a blowtorch to heat them.



I wrapped the braided sinew cable around the bow to try to figure out a good pattern and sequence of wrapping. In the version shown in the pictures I used about 69 feet of cord, with a couple feet left over, but I think I know how to use up those two feet the next time I wrap it. I started with 30 tight wraps around the elbow in the limb that gave me the problems and then ran a line along the back of the bow to the opposite elbow and did 30 tight loops there. If this bow was made in separate pieces, then these lashings would be important to bind together the spliced joins. From the second elbow I ran the cord to the nearest end nock and stretched six long strands back and forth to the opposite end. After that, I ran 8 cords from elbow to elbow, securing them with half-hitches, so that the cable in the two thirds of the bow has a total of 15 strands (8 running from elbow to elbow, 6 running from end to end, and 1 that runs from the first set of elbow lashings to the second set). I wrapped the final bit of cord around the 15 strand cable in the middle of the bow.
I studied a lot of reference photos and drawings to come up with this pattern and it accomplishes a few things that show up in ethnographic and archaeological bows.
- The splices on the elbows of the bow are lashed first and separately. Sometimes this is a different material.
- Some strands run end-to-end through the nocks.
- The cable bundle in the middle is noticeably thicker than the cable towards the ends of the limbs. More strands run through the middle two thirds of the bow than along its entire length.
- The cable bundle is wrapped in a spiral pattern. Again, sometimes this is a different material.

I have a bit more tillering to do and a sinew bow string to finish, but once that's done, the bow should be ready for final assembly. I haven't twisted any tension into the cable yet, but just tying it down to the bow makes things pretty tight. I'll explain how a sinew twister is used to tighten the cable in a future post.
Photo Credits: Tim Rast
Photo Captions:
First: The bow with a trial wrapping of braided sinew cord in the tiller
Second: Successfully putting the recurve in a limb
Third: Failing to put the recurve in a limb - these are the cracks I had to fix
Fourth: The cabled bow in the tiller drawn to 16 inches
Fifth: The unstrung bow with the cable backing described in the text
Sixth: Detail of the limb - you can see the initial wrapping around the elbow, the six long cables, the bundle of shorter cables tied from elbow to elbow and the wrapping of the 15 strand bundle in the centre of the bow.
Seventh: The green tiller string fits on the nock with 3 loops of braided cord underneath.
No comments:
Post a Comment